# Altivar Easy <br> Variable Speed Drives ATV610 

## Installation Manual

09/2018


The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.
You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.
All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2018 Schneider Electric. All Rights Reserved.

## Table of Contents

Safety Information. ..... 5
About the Book ..... 9
Chapter 1 Introduction ..... 11
Verifying the Absence of Voltage ..... 12
Drive Overview ..... 13
Accessories and Options ..... 16
Green Premium ${ }^{\text {TM }}$ ..... 16
Steps for setting up the drive ..... 17
Preliminary Instructions ..... 18
Chapter 2 Technical Data ..... 19
2.1 Environment Data ..... 20
Temperature Conditions ..... 21
Altitude Conditions ..... 21
Chemical and Mechanical Conditions ..... 21
2.2 Mechanical Data ..... 22
Dimensions and Weights ..... 22
2.3 Electrical Data ..... 29
Drive Ratings in Normal Duty ..... 30
Drive Ratings in Heavy Duty ..... 31
Chapter 3 Drive Mounting ..... 33
Mounting Conditions ..... 34
Derating Curves ..... 38
Mounting Procedures ..... 41
Chapter 4 Drive wiring ..... 43
Wiring Instructions ..... 44
Cable Length Instructions ..... 47
Wiring Diagrams ..... 49
Sink / Source Switch Configuration ..... 51
Characteristics of the Power Part Terminals ..... 52
Wiring The Power Part ..... 54
Electromagnetic Compatibility ..... 58
Operation on an IT or Corner Grounded System ..... 60
Disconnecting The Built-in EMC Filter ..... 60
Arrangement and Characteristics of Control Block Terminals and Communication and I/O Ports ..... 63
Control Terminals Electrical Data ..... 64
Wiring The Control Part ..... 67
Chapter 5 Checking Installation ..... 69
Before Switching On ..... 69
Chapter 6 Maintenance ..... 71
Scheduled servicing ..... 71
Glossary ..... 75

# Safety Information 

## Important Information

## NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.


The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

$\triangle$
This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

## DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING
WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

## A CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

## NOTICE

NOTICE is used to address practices not related to physical injury.

## PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

## Qualification Of Personnel

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. In addition, these persons must have received safety training to recognize and avoid hazards involved. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by changing the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used. All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.

This product is a drive for three-phase asynchronous motors and intended for industrial use according to this manual. The product may only be used in compliance with all applicable safety standard and local regulations and directives, the specified requirements and the technical data. The product must be installed outside the hazardous ATEX zone. Prior to using the product, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety measures must be implemented. Since the product is used as a component in an entire system, you must ensure the safety of persons by means of the design of this entire system (for example, machine design). Any use other than the use explicitly permitted is prohibited and can result in hazards. Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

## Product Related Information

Read and understand these instructions before performing any procedure with this drive.

## 4 A DANGER

## HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation and who have received safety training to recognize and avoid hazards involved are authorized to work on and with this drive system. Installation, adjustment, repair and maintenance must be performed by qualified personnel.
- The system integrator is responsible for compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
- Many components of the product, including the printed circuit boards, operate with mains voltage.
- Only use properly rated, electrically insulated tools and measuring equipment.
- Do not touch unshielded components or terminals with voltage present.
- Motors can generate voltage when the shaft is rotated. Prior to performing any type of work on the drive system, block the motor shaft to prevent rotation.
- AC voltage can couple voltage to unused conductors in the motor cable. Insulate both ends of unused conductors of the motor cable.
- Do not short across the DC bus terminals or the DC bus capacitors or the braking resistor terminals.
- Before performing work on the drive system:
o Disconnect all power, including external control power that may be present. Take into account that the circuit breaker or main switch does not de-energize all circuits.
- Place a Do Not Turn On label on all power switches related to the drive system.
o Lock all power switches in the open position.
- Wait 15 minutes to allow the DC bus capacitors to discharge.
o Follow the instructions given in the chapter "Verifying the Absence of Voltage" in the installation manual of the product.
- Before applying voltage to the drive system:
- Verify that the work has been completed and that the entire installation cannot cause hazards.
- If the mains input terminals and the motor output terminals have been grounded and short-circuited, remove the ground and the short circuits on the mains input terminals and the motor output terminals.
- Verify proper grounding of all equipment.
o Verify that all protective equipment such as covers, doors, grids is installed and/or closed.
Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unexpected movements because of incorrect wiring, incorrect settings, incorrect data or other errors.

| A WARNING |
| :--- |
| UNANTICIPATED EQUIPMENT OPERATION |
| - Carefully install the wiring in accordance with the EMC requirements. |
| - Do not operate the product with unknown or unsuitable settings or data. |
| - Perform a comprehensive commissioning test. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

Damaged products or accessories may cause electric shock or unanticipated equipment operation.

### 4.4 DANGER

## ELECTRIC SHOCK OR UNANTICIPATED EQUIPMENT OPERATION

Do not use damaged products or accessories.
Failure to follow these instructions will result in death or serious injury.

Contact your local Schneider Electric sales office if you detect any damage whatsoever.

| LOSS OF CONTROL |
| :--- |
| - The designer of any control scheme must consider the potential failure modes of control paths and, |
| for critical control functions, provide a means to achieve a safe state during and after a path failure. |
| Examples of critical control functions are emergency stop, overtravel stop, power outage and restart. |
| - Separate or redundant control paths must be provided for critical control functions. |
| - System control paths may include communication links. Consideration must be given to the |
| implications of unanticipated transmission delays or failures of the link. |
| - Observe all accident prevention regulations and local safety guidelines (1). |
| - Each implementation of the product must be individually and thoroughly tested for proper operation |
| before being placed into service. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

(1) For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control and to NEMA ICS 7.1 (latest edition), Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems.

| NOT/CE |
| :--- |
| DESTRUCTION DUE TO INCORRECT MAINS VOLTAGE |
| Before switching on and configuring the product, verify that it is approved for the mains voltage. |
| Failure to follow these instructions can result in equipment damage. |

The temperature of the products described in this manual may exceed $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ during operation.

## A WARNING

## HOT SURFACES

- Ensure that any contact with hot surfaces is avoided.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the product has sufficiently cooled down before handling it.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of a hazardous atmosphere.

## 4 DANGER

## POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.
Failure to follow these instructions will result in death or serious injury.

## About the Book

At a Glance

## Document Scope

The purpose of this document is:

- to give you mechanical and electrical information related to the drive,
- to show you how to install and wire this drive.

Validity Note
NOTE: The products listed in the document are not all available at the time of publication of this document online. The data, illustrations and product specifications listed in the guide will be completed and updated as the product availabilities evolve. Updates to the guide will be available for download once products are released on the market.

This documentation is valid for the Altivar 610 drive.
The technical characteristics of the devices described in the present document also appear online. To access the information online:

| Step | Action |
| :---: | :--- |
| 1 | Go to the Schneider Electric home page www.schneider-electric.com. |
| 2 | In the Search box type the reference of a product or the name of a product range. <br> - Do not include blank spaces in the reference or product range. <br> - To get information on grouping similar modules, use asterisks ( ". |
| 3 | If you entered a reference, go to the Product Datasheets search results and click on the reference that <br> interests you. <br> If you entered the name of a product range, go to the Product Ranges search results and click on the <br> product range that interests you. |
| 4 | If more than one reference appears in the Products search results, click on the reference that interests <br> you. |
| 5 | Depending on the size of your screen, you may need to scroll down to see the data sheet. |
| 6 | To save or print a data sheet as a .pdf file, click Download XXX product datasheet. |

The characteristics that are presented in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

## Related Documents

Use your tablet or your PC to quickly access detailed and comprehensive information on all our products on www.schneider-electric.com.

The internet site provides the information you need for products and solutions:

- The whole catalog for detailed characteristics and selection guides,
- The CAD files to help design your installation, available in over 20 different file formats,
- All software and firmware to maintain your installation up to date,
- A large quantity of White Papers, Environment documents, Application solutions, Specifications... to gain a better understanding of our electrical systems and equipment or automation,
- And finally all the User Guides related to your drive, listed below:

| Title of Documentation | Catalog Number |
| :--- | :--- |
| Altivar Easy 610 Catalog | DIA2ED2140702EN (English) |
| ATV610 Getting Started | EAV64374 (English) <br> EAV64379 (Chinese) |
| ATV610 Installation Manual | EAV64381 (English) <br> EAV64386 (Chinese) |
| ATV610 Programming Manual | EAV64387 (English) <br> EAV64393 (Chinese) |
| ATV610 Communication Parameters File | EAV64394 (English) |
| ATV610 Modbus Manual | EAV64395 (English) |
| ATV610 PROFIBUS DP manual | EAV64396 (English) |

You can download these technical publications and other technical information from our website at https://www.schneider-electric.cn/zh/download/

## Terminology

In the area of drive systems this includes, but is not limited to, terms such as error, error message, failure, fault, fault reset, protection, safe state, safety function, warning, warning message, and so on.
Among others, these standards include:

- IEC 61800 series: Adjustable speed electrical power drive systems
- IEC 61508 Ed. 2 series: Functional safety of electrical/electronic/programmable electronic safety-related
- EN 954-1 Safety of machinery - Safety related parts of control systems
- ISO 13849-1 \& 2 Safety of machinery - Safety related parts of control systems
- IEC 61158 series: Industrial communication networks - Fieldbus specifications
- IEC 61784 series: Industrial communication networks - Profiles
- IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements

In addition, the term zone of operation is used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the EC Machinery Directive (2006/42/EC) and in ISO 12100-1.

Also see the glossary at the end of this manual.

## Contact Us

Select your country on:

## www.schneider-electric.com/contact

## Schneider Electric Industries SAS

Head Office
35, rue Joseph Monier
92500 Rueil-Malmaison
France

## Chapter 1

## Introduction

What Is in This Chapter?
This chapter contains the following topics:

| Topic | Page |
| :--- | :---: |
| Verifying the Absence of Voltage | 12 |
| Drive Overview | 13 |
| Accessories and Options | 16 |
| Green Premium ${ }^{\text {TM }}$ | 16 |
| Steps for setting up the drive | 17 |
| Preliminary Instructions | 18 |

## Verifying the Absence of Voltage

Instructions
The DC bus voltage level is determined by measuring the voltage between the DC bus terminals $\mathrm{PA} /+$ and PC/-.
The location of the DC bus terminals depends on the drive model.
Identify your drive model by referring to the nameplate of the drive. Then, refer to the chapter "Wiring the Power Part" (see page 54) for the location of the DC bus terminals PA/+ and PC/-.

### 4.1 DANGER

## HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation and who have received safety training to recognize and avoid hazards involved are authorized to work on and with this drive system. Installation, adjustment, repair and maintenance must be performed by qualified personnel.
- The system integrator is responsible for compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
- Many components of the product, including the printed circuit boards, operate with mains voltage.
- Only use properly rated, electrically insulated tools and measuring equipment.
- Do not touch unshielded components or terminals with voltage present.
- Motors can generate voltage when the shaft is rotated. Prior to performing any type of work on the drive system, block the motor shaft to prevent rotation.
- AC voltage can couple voltage to unused conductors in the motor cable. Insulate both ends of unused conductors of the motor cable.
- Do not short across the DC bus terminals or the DC bus capacitors or the braking resistor terminals.
- Before performing work on the drive system:
- Disconnect all power, including external control power that may be present. Take into account that the circuit breaker or main switch does not de-energize all circuits.
o Place a Do Not Turn On label on all power switches related to the drive system.
- Lock all power switches in the open position.
- Wait 15 minutes to allow the DC bus capacitors to discharge.
- Follow the instructions given in the chapter "Verifying the Absence of Voltage" in the installation manual of the product.
- Before applying voltage to the drive system:
- Verify that the work has been completed and that the entire installation cannot cause hazards.
- If the mains input terminals and the motor output terminals have been grounded and short-circuited, remove the ground and the short circuits on the mains input terminals and the motor output terminals.
- Verify proper grounding of all equipment.
o Verify that all protective equipment such as covers, doors, grids is installed and/or closed.
Failure to follow these instructions will result in death or serious injury.


## Procedure

Perform the following actions to verify the absence of voltage

| Step | Action |
| :---: | :--- |
| 1 | Measure the voltage on the DC bus between the DC bus terminals (PA/+ and PC/-) using a properly <br> rated voltmeter to verify that the voltage is less than 42 Vdc |
| 2 | If the DC bus capacitors do not discharge properly, contact your local Schneider Electric representative. <br> Do not repair or operate the product. |
| 3 | Verify that no other voltage is present in the drive system. |

## Drive Overview

## Frame Sizes

The family of Altivar 610 includes 6 frame sizes of IP20 products.

| Frame Size 1 | Frame Size 2 |
| :--- | :--- |
| 3-phase $380 \ldots 415 \mathrm{~V}, 0.75 \ldots . .7 .5 \mathrm{~kW}, 1 \ldots 10 \mathrm{HP}$ | 3-phase $380 \ldots 415 \mathrm{~V}, 11$ and $15 \mathrm{~kW}, 15$ and 20 HP |
|  |  |
|  |  |


| Frame Size 3 | Frame Size 4 |  |
| :--- | :--- | :--- |
| 3-phase $380 \ldots 415 \mathrm{~V}, 18.5$ and $22 \mathrm{~kW}, 25$ and 30 HP | 3 -phase $380 \ldots 415 \mathrm{~V}, 30 \ldots 45 \mathrm{~kW}, 40 \ldots 60 \mathrm{HP}$ |  |
|  |  |  |

Frame Size 5 Frame Size 6

Catalog Number Description


Nameplate example
The nameplate contains the following data:

(1) Product type (2) Catalog number (3) Firmware version
(4) Power rating (5) Power part information
(6) Power part cable information (7) Degree of protection (8) Serial number

## Accessories and Options

Introduction
Altivar Easy 610 drives are designed to take numerous accessories and options to increase their functionality. For a detailed description and catalog numbers, refer to the Catalog (see page 10). All accessories and options come with an instruction sheet to help installation and commissioning. Therefore you will only find here a short product description.

## Accessories

## IP upgrade

- Metal conduit box for size 6 product for IP21 degree of protection on bottom side.



## Plain text display terminal

- Remote mounting kit for mounting on enclosure door

Filters

## dv/dt filters

## Options

## I/O extension modules

- Digital and analog I/O module
- Relay output module

Communication

- PROFIBUS DP V1 communication module


## Green Premium ${ }^{\text {™ }}$

## Description

Information on the environmental impact of products, their resource efficiency, and end-of-life instructions.

Easy access to information: "Check Your Product"
Certificates and relevant product information available at the address:
www.schneider-electric.com/green-premium
You can download RoHS and REACh compliance declarations, Product Environmental Profiles (PEP) and End-of-Life instructions (EoLi).


## Preliminary Instructions

Inspecting the product
Damaged products or accessories may cause electric shock or unanticipated equipment operation.

### 4.1 DANGER

## ELECTRIC SHOCK OR UNANTICIPATED EQUIPMENT OPERATION

Do not use damaged products or accessories.
Failure to follow these instructions will result in death or serious injury.

Contact your local Schneider Electric sales office if you detect any damage whatsoever.

| Step | Action |
| :---: | :--- |
| 1 | Verify that the catalog number printed on the nameplate (see page 15) corresponds to the purchase <br> order. |
| 2 | Before performing any installation work, inspect the product for visible damage. |

Handling

|  |
| :--- |
| INCORRECT HANDLING |
| - Follow all handling instructions provided in this manual and in all associated product documentation. |
| - Handle and store the product in its original packaging. |
| - Do not handle and store the product if the packaging is damaged or appears to be damaged. |
| - Take all measures required to avoid damage to the product and other hazards when handling or |
| opening the packaging. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

Altivar Easy drives of frame sizes 1 up to 3 can be removed from their packaging and installed without a handling device.

Higher frame size drives require a handling device. These drives are equipped with lifting lugs.


## Chapter 2

## Technical Data

What Is in This Chapter?
This chapter contains the following sections:

| Section | Topic | Page |
| :--- | :--- | :---: |
| 2.1 | Environment Data | 20 |
| 2.2 | Mechanical Data | 22 |
| 2.3 | Electrical Data | 29 |

## Section 2.1

## Environment Data

What Is in This Section?
This section contains the following topics:

| Topic | Page |
| :--- | :---: |
| Temperature Conditions | 21 |
| Altitude Conditions | 21 |
| Chemical and Mechanical Conditions | 21 |

## Temperature Conditions

Climatic Environmental Conditions for Transportation and Storage
The environment during transportation and storage must be dry and free from dust.

| Storage | Temperature | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots 70$ |
| :--- | :--- | :--- | :--- |
|  |  | ${ }^{\circ} \mathrm{F}$ | $-40 \ldots 158$ |
| Transportation | Temperature | ${ }^{\circ} \mathrm{C}$ | $-40 \ldots 70$ |
|  |  | ${ }^{\circ} \mathrm{F}$ | $-40 \ldots 158$ |
| Relative humidity | $\%$ | $5 \ldots 95$ |  |

Climatic Environmental Conditions for Operation
The maximum permissible ambient temperature during operation depends on the mounting distances between the devices and on the required power. Observe the pertinent instructions in the chapter Drive Mounting (see page 33).

| Frame sizes 1... 6 ATV610..... products | Temperature without derating | ${ }^{\circ} \mathrm{C}$ | -15... 45 |
| :---: | :---: | :---: | :---: |
|  |  | ${ }^{\circ} \mathrm{F}$ | 5... 113 |
|  | Temperature with derating of output power (1) | ${ }^{\circ} \mathrm{C}$ | Up to 60 |
|  |  | ${ }^{\circ} \mathrm{F}$ | Up to 140 |
|  | Temperature with derating of output power (1) and control without Graphic display terminal | ${ }^{\circ} \mathrm{C}$ | Up to 70 |
|  |  | ${ }^{\circ} \mathrm{F}$ | -40... 158 |
| All products | Relative humidity without condensing | \% | 5... 95 |

(1) Refer to Derating Curves section (see page 38).

## Altitude Conditions

Operating Altitude
Frame Sizes 1... 6

| Altitude | Supply voltage | Supply Electrical Network |  |  | Derating |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TT/TN | IT | CornerGrounded |  |
| Up to $1000 \mathrm{~m}(3300 \mathrm{ft})$ | 380... 415 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | 0 |
| 1000... 2000 m (3300... 6600 ft ) | 380...415 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 2000... 3800 m (6600... 12400 ft ) | 380...415 V | $\checkmark$ | $\checkmark$ | - | $\checkmark$ |
| 3800... 4800 m (12400... 15700 ft ) | 380... 415 V | $\checkmark$ | - | - | $\checkmark$ |
| Legend: $\checkmark$ : Derate the nominal current of the drive by $1 \%$ for each additional 100 m . <br> o : Without derating <br> -: Not applicable |  |  |  |  |  |

## Chemical and Mechanical Conditions

Withstand to harsh environments, conforming to IEC/EN 60721-3-3

- Chemical active substances, class 3C3
- Mechanical active substances, class 3S3
- Mechanical conditions, class 3M3


## Section 2.2

## Mechanical Data

Dimensions and Weights

About the drawings
All drawings CAD files can be downloaded from www.schneider-electric.com

Frame Size 1
IP20 Drives - Rear and Side View With Top Cover - Side View Without Top Cover


## Weights

| Catalog Number | Weight in kg (lb) |
| :--- | :--- |
| ATV610U07N4...U30N4 | $2.4(5.3)$ |
| ATV610U40N4 | $4.0(8.8)$ |
| ATV610U55N4, ATV610U75N4 | $4.1(9)$ |

## Frame size 2

IP20 Drives - Rear and Side View With Top Cover - Side View Without Top Cover


Weights

| Catalog Number | Weight in kg (lb) |
| :--- | :--- |
| ATV610D11N4 and ATV610D15N4 | $7.2(15.9)$ |



Weights

| Catalog Number | Weight in kg (lb) |
| :--- | :--- |
| ATV610D18N4 and ATV610D22N4 | $14(30.9)$ |

IP20 Drives - Rear and Side View With Top Cover - Side View Without Top Cover


Weights

| Catalog Number | Weight in kg (lb) |
| :--- | :--- |
| ATV610D30N4..ATV610D45N4 | $28(61.7)$ |



Weights

| Catalog Number | Weight in $\mathrm{kg}(\mathrm{lb})$ |
| :--- | :--- |
| ATV610D55N4...ATV610D90N4 | $53.7(118.4)$ |

Frame size 6
IP20 on Top and IP00 on bottom Drives - Rear and Side View With Top Cover


IP20 Drives - Rear, Front and Side View With Top Cover and Conduit Box


## Weights

| Catalog Number | Weight in kg (lb) |
| :--- | :--- |
| ATV610C11N4...ATV610C16N4 | 82 (181) |

## Section 2.3

## Electrical Data

What Is in This Section?
This section contains the following topics:

| Topic | Page |
| :--- | :---: |
| Drive Ratings in Normal Duty | 30 |
| Drive Ratings in Heavy Duty | 31 |

Drive Ratings in Normal Duty

Normal Duty
Normal duty values are given for applications requiring a slight overload (up to $120 \%$ ).
NOTE:

- Refer to the catalog for the fuse coordination table.
- Refer to the ATV610 Programming manual (see page 10) for motor overload protection and overtemperature protection.

IP20 Products (frame sizes 1...5) and IP20 on Top, IP00 on bottom products (frame size 6), 3-Phase Power Part Supply Voltage $380 . . .415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

| Catalog Number and Size [] |  | Nominal Power(1) |  | Power Part Supply |  |  |  | Drive (output) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Max. Input Current | Apparent P ower | Max. <br> Inrush Current ( <br> 2) | NominalC urrent (1) | Max. <br> Transient current (1) (3) |
|  |  | at <br> 380 Vac |  |  |  |  | at 415 Vac |
|  |  | kW | HP | A | A | kVA | A | A | A |
| ATV610U07N4 | [1] |  |  | 0.75 | 1 | 3.1 | 2.9 | 2.1 | 8 | 2.2 | 2.4 |
| ATV610U15N4 | [1] |  |  | 1.5 | 2 | 5.7 | 5.3 | 3.8 | 8 | 4 | 4.4 |
| ATV610U22N4 | [1] | 2.2 | 3 | 7.8 | 7.1 | 5.1 | 8 | 5.6 | 6.2 |
| ATV610U30N4 | [1] | 3 | - | 10.1 | 9.2 | 6.6 | 34 | 7.2 | 7.9 |
| ATV610U40N4 | [1] | 4 | 5 | 8.8 | 8.5 | 6.1 | 33 | 9.3 | 10.2 |
| ATV610U55N4 | [1] | 5.5 | $7^{1 / 2}$ | 11.6 | 11.0 | 7.9 | 34 | 12.7 | 14.0 |
| ATV610U75N4 | [1] | 7.5 | 10 | 14.7 | 13.7 | 9.9 | 34 | 15.8 | 17.4 |
| ATV610D11N4 | [2] | 11 | 15 | 22.0 | 20.7 | 14.9 | 40 | 23.5 | 25.9 |
| ATV610D15N4 | [2] | 15 | 20 | 29.4 | 27.7 | 19.9 | 40 | 31.7 | 34.9 |
| ATV610D18N4 | [3] | 18.5 | 25 | 37.2 | 35.2 | 25.3 | 76 | 39.2 | 43.1 |
| ATV610D22N4 | [3] | 22 | 30 | 41.9 | 39.0 | 28.0 | 76 | 46.3 | 50.9 |
| ATV610D30N4 | [4] | 30 | 40 | 62.5 | 59.7 | 42.9 | 91 | 61.5 | 67.7 |
| ATV610D37N4 | [4] | 37 | 50 | 76.6 | 72.9 | 52.4 | 101 | 74.5 | 82.0 |
| ATV610D45N4 | [4] | 45 | 60 | 92.9 | 88.3 | 63.5 | 124 | 88 | 96.8 |
| ATV610D55N4 | [5] | 55 | 75 | 111.5 | 105.6 | 75.9 | 167 | 120 | 132.0 |
| ATV610D75N4 | [5] | 75 | 100 | 147.9 | 139.0 | 99.9 | 186 | 145 | 159.5 |
| ATV610D90N4 | [5] | 90 | 125 | 177.8 | 168.5 | 121.1 | 240 | 173 | 190.3 |
| ATV610C11N4 | [6] | 110 | 150 | 201 | 165.0 | 118.6 | 325 | 211 | 232 |
| ATV610C13N4 | [6] | 132 | 200 | 237 | 213.0 | 153.1 | 325 | 250 | 275 |
| ATV610C16N4 | [6] | 160 | 250 | 284 | 261.0 | 187.6 | 325 | 302 | 332 |

(1) The switching frequency is adjustable:

O From $2 \ldots 12 \mathrm{kHz}$ for drive frame sizes 1 to 4 , rated value: 4 kHz
O From 1 ... 8 kHz for drive frame sizes 5 and 6, rated value: 2.5 kHz
For operation at switching frequencies higher than the rated value. Derating must be applied to the drive (output) current (see page 38). In this case, switching frequency can be reduced if an excessive temperature rise occurs.
(2) Peak current when power is switched On, for the maximum supply mains voltage.
(3) The drive is designed to run up to 60 s at $110 \%$ of nominal current.

## Drive Ratings in Heavy Duty

Heavy Duty
Heavy-duty values are given for applications requiring a significant overload (up to $150 \%$ ).
NOTE:

- Refer to the catalog for the fuse coordination table.
- Refer to the ATV610 Programming manual (see page 10) for motor overload protection and overtemperature protection.

IP20 Products (frame sizes 1...5) and IP20 on Top, IP00 on bottom products, 3-Phase Power Part Supply Voltage 380... 415 V $50 / 60 \mathrm{~Hz}$

| Catalog Numberand Size [•] |  | Nominal Power(1) |  | Power Part Supply |  |  |  | Drive (output) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Max. Input Current | Apparent P ower | Max. <br> Inrush Current( 2) | Nominal Current (1) | Max. <br> Transient current (1) (3) |
|  |  | at 380 Vac |  |  |  |  | at 415 Vac |
|  |  | kW | HP | A | A | kVA | A | A | A |
| ATV610U07N4 | [1] |  |  | 0.37 | 1/2 | 1.7 | 1.5 | 1.1 | 8 | 1.5 | 2.3 |
| ATV610U15N4 | [1] |  |  | 0.75 | 1 | 3.1 | 2.8 | 2.0 | 8 | 2.2 | 3.3 |
| ATV610U22N4 | [1] | 1.5 | 2 | 5.6 | 5.1 | 3.7 | 8 | 4 | 6.0 |
| ATV610U30N4 | [1] | 2.2 | 3 | 7.6 | 7 | 5.0 | 34 | 5.6 | 8.4 |
| ATV610U40N4 | [1] | 3 | - | 7.2 | 6.7 | 4.8 | 33 | 7.2 | 10.8 |
| ATV610U55N4 | [1] | 4 | 5 | 8.9 | 8.6 | 6.2 | 34 | 9.3 | 14.0 |
| ATV610U75N4 | [1] | 5.5 | $7^{1 / 2}$ | 11.3 | 10.7 | 7.7 | 34 | 12.7 | 19.1 |
| ATV610D11N4 | [2] | 7.5 | 10 | 16.4 | 15.7 | 11.3 | 40 | 16.5 | 24.8 |
| ATV610D15N4 | [2] | 11 | 15 | 23 | 21.9 | 15.7 | 40 | 23.5 | 35.3 |
| ATV610D18N4 | [3] | 15 | 20 | 31.6 | 30.3 | 21.8 | 76 | 31.7 | 47.6 |
| ATV610D22N4 | [3] | 18.5 | 25 | 36 | 33.8 | 24.3 | 76 | 39.2 | 58.8 |
| ATV610D30N4 | [4 | 22 | 30 | 49.7 | 46.3 | 33.3 | 91 | 46.3 | 69.5 |
| ATV610D37N4 | [4 | 30 | 40 | 65.8 | 61.8 | 44.4 | 101 | 59.6 | 89.4 |
| ATV610D45N4 | [4 | 37 | 50 | 80.5 | 75.8 | 54.5 | 124 | 74.5 | 112 |
| ATV610D55N4 | [5] | 45 | 60 | 95.9 | 91.2 | 65.6 | 167 | 88 | 132.0 |
| ATV610D75N4 | [5] | 55 | 75 | 115.8 | 110.0 | 79.1 | 186 | 106 | 159.0 |
| ATV610D90N4 | [5] | 75 | 100 | 155.8 | 149.1 | 107.2 | 240 | 145 | 217.5 |
| ATV610C11N4 | [6] | 90 | 125 | 170 | 160 | 115.0 | 325 | 173 | 259.5 |
| ATV610C13N4 | [6] | 110 | 150 | 201 | 188 | 135.1 | 325 | 211 | 317 |
| ATV610C16N4 | [6] | 132 | 200 | 237 | 224 | 161.0 | 325 | 250 | 375 |

(1) The switching frequency is adjustable:

O From 2... 12 kHz for drive frame sizes 1 to 4 , rated value: 4 kHz
From $1 \ldots .8 \mathrm{kHz}$ for drive frame sizes 5 and 6, rated value: 2.5 kHz
For operation at switching frequencies higher than the rated value. Derating must be applied to the drive (output) current (see page 38). In this case, switching frequency can be reduced if an excessive temperature rise occurs.
(2) Peak current when power is switched On, for the maximum supply mains voltage.
(3) The drive is designed to run up to 60 s at $110 \%$ of nominal current.

## Chapter 3

## Drive Mounting

What Is in This Chapter?
This chapter contains the following topics:

| Topic | Page |
| :--- | :---: |
| Mounting Conditions | 34 |
| Derating Curves | 38 |
| Mounting Procedures | 41 |

## Mounting Conditions

## Before You Begin

Conductive foreign objects, dust or liquids or damaged parts may cause parasitic voltage.

## 4 A DANGER

## ELECTRIC SHOCK CAUSED BY FOREIGN OBJECTS OR DAMAGE

- Do not use damaged products.
- Keep foreign objects such as chips, screws or wire clippings from getting into the product.
- Verify correct seat of seals and cable entries in order to avoid deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

The temperature of the products described in this manual may exceed $80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$ during operation.

|  |
| :--- |
| HOT SURFACES |
| - Ensure that any contact with hot surfaces is avoided. |
| - Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces. |
| - Verify that the product has sufficiently cooled down before handling it. |
| - Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

Power Drive Systems (PDS) can generate strong local electrical and magnetic fields. This can cause interference in electromagnetically sensitive devices.

## A WARNING

## ELECTROMAGNETIC FIELDS

- Keep persons with electronic medical implants, such as pacemakers, away from the equipment.
- Do not place electromagnetically sensitive devices in the vicinity of the equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Attaching A Label With Safety Instructions
A label kit is provided with the drive.

| Step | Action |
| :---: | :--- |
| 1 | Observe the safety regulations in the target country |
| 2 | Select the label suitable for the target country |
| 3 | Attach the label to the front of the device so that it is clearly visible. Below is the English version. The <br> label can vary depending on the frame size of the product. <br> ELECTRIC SHOCK, <br> EXPLOSION, <br> OR ARC FLASH. <br> To service, remove all power. <br> -Wait minutes <br> -Verify no voltage is present. <br> Failure to comply <br> will result in death <br> or serious injury |

This table shows the possible mounting types and the resulting IP degree of protection.

Nounting | Type $/$ IP |
| :--- | :--- |
| Individual |
| IP20 |

Clearances and Mounting Position - Wall Mounting


Minimum clearance regarding the drive frame size

| Frame Size | X1 | X2 | X3 |
| :--- | :--- | :--- | :--- |
| $1 . .5$ | $\geqslant 100 \mathrm{~mm}(3.94 \mathrm{in})$. | $\geqslant 100 \mathrm{~mm}(3.94 \mathrm{in})$. | $\geqslant 10 \mathrm{~mm}(0.39 \mathrm{in})$. |
| 6 | $\geqslant 250 \mathrm{~mm}(10 \mathrm{in})$. | $\geqslant 250 \mathrm{~mm}(10 \mathrm{in})$. | $\geqslant 100 \mathrm{~mm}(3.94 \mathrm{in})$. |

X 1 : free space in top of the drive
X2: free space in bottom of the drive
X3: free space in front of the drive

## General Mounting Instructions

- Mount the device in a vertical position. This is required for cooling the device.
- Attach it on the mounting surface in compliance with standards, using 4 screws with captive washer according to the table given in Mounting Procedures (see page 41).
- The use of washers is required with all mounting screws.
- Tighten the fixation screws.
- Do not mount the device close to heat sources.
- Avoid environmental effects like high temperatures and high humidity as well as dust, dirt and conductive gases.
- Adhere to the minimum installation distances for required cooling.
- Do not mount the device on flammable materials.

Power Dissipated For Enclosed Drives and Required Air Flow

| Catalog Number | Frame Size | Power Dissipated (1) |  |  | Minimum air flow rate required per hour |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Forced Cooled Area | Natural Cooled Area | Total |  |  |
|  |  | (W) | (W) | (W) | $\left(m^{3}\right)$ | $\left(y d^{3}\right)$ |
| ATV610U07N4 | 1 | 19 | 23 | 42 | 38 | 50 |
| ATV610U15N4 | 1 | 40 | 25 | 65 | 38 | 50 |
| ATV610U22N4 | 1 | 54 | 27 | 81 | 38 | 50 |
| ATV610U30N4 | 1 | 74 | 29 | 103 | 38 | 50 |
| ATV610U40N4 | 1 | 128 | 32 | 160 | 38 | 50 |
| ATV610U55N4 | 1 | 171 | 35 | 205 | 38 | 50 |
| ATV610U75N4 | 1 | 216 | 42 | 258 | 103 | 135 |
| ATV610D11N4 | 2 | 310 | 54 | 364 | 103 | 135 |
| ATV610D15N4 | 2 | 408 | 62 | 469 | 215 | 281 |
| ATV610D18N4 | 3 | 410 | 64 | 474 | 215 | 281 |
| ATV610D22N4 | 3 | 492 | 72 | 564 | 215 | 281 |
| ATV610D30N4 | 4 | 649 | 91 | 740 | 240 | 314 |
| ATV610D37N4 | 4 | 842 | 109 | 950 | 240 | 314 |
| ATV610D45N4 | 4 | 1000 | 121 | 1121 | 240 | 314 |
| ATV610D55N4 | 5 | 969 | 131 | 1100 | 295 | 386 |
| ATV610D75N4 | 5 | 1460 | 177 | 1637 | 295 | 386 |
| ATV610D90N4 | 5 | 1745 | 199 | 1943 | 295 | 386 |
| ATV610C11N4 | 6 | 2060 | 230 | 2290 | 600 | 785 |
| ATV610C13N4 | 6 | 2620 | 260 | 2880 | 600 | 785 |
| ATV610C16N4 | 6 | 3410 | 300 | 3710 | 600 | 785 |

(1) First value is the power dissipated at nominal current in the forced cooled area of the drive. The second value is the power dissipated at nominal current in the natural cooled area. If the drive is installed in a standard cabinet, the sum of both values is to be taken into account.

## Derating Curves

Description
Derating curves for the nominal drive current ( In ) as a function of temperature and switching frequency. Refer to the Mounting Conditions chapter (see page 35) for the mounting types description.

Frame Size 1


- $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
- $=$ - $=45^{\circ} \mathrm{C}(\mathrm{A})\left(113^{\circ} \mathrm{F}\right)$ - Mounting type $A$ and $C$
- =-=-= $45^{\circ} \mathrm{C}(\mathrm{B})\left(113^{\circ} \mathrm{F}\right)$ - Mounting type B
- $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C

Frame Size 2


40 ${ }^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ - Mounting type $\mathrm{A}, \mathrm{B}$ and C

- $=-=-=45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
$\quad 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C


## Frame Size 3


_ $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C

- =- =. $=45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ - Mounting type $\mathrm{A}, \mathrm{B}$ and C
$=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C

Frame Size 4


Frame Size 5

$40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C

-     -         - $=-45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ - Mounting type $\mathrm{A}, \mathrm{B}$ and C
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C


## Frame Size 6


— $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C

- $=-=-45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ - Mounting type A, B and C
$-60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Mounting type B and C


## Mounting Procedures

## Mounting Screws

| Frame Size | Screw diameter | Hole diameter |
| :--- | :--- | :--- |
| 1 | $5 \mathrm{~mm}(0.2 \mathrm{in})$ | $6 \mathrm{~mm}(0.24 \mathrm{in})$ |
| 2 | $5 \mathrm{~mm}(0.2 \mathrm{in})$ | $6 \mathrm{~mm}(0.24 \mathrm{in})$ |
| 3 | $5 \mathrm{~mm}(0.2 \mathrm{in})$ | $6 \mathrm{~mm}(0.24 \mathrm{in})$ |
| 4 | $6 \mathrm{~mm}(0.24 \mathrm{in})$ | $7 \mathrm{~mm}(0.28 \mathrm{in})$ |
| 5 | $8 \mathrm{~mm}(0.31 \mathrm{in})$ | $9 \mathrm{~mm}(0.35 \mathrm{in})$ |
| 6 | $10 \mathrm{~mm}(0.4 \mathrm{in})$ | $11.5 \mathrm{~mm}(0.45 \mathrm{in})$ |

Mounting Procedure For Frame Sizes 1 to 4


Perform the following instructions

| Step | Action |
| :---: | :--- |
| 1 | Slide the top cover from back to front |
| 2 | Remove the top cover |
| 3 | Attach the drive the mounting surface using the M5 screws with captive washer. |
| 4 | Refit the top cover to help prevent metal parts to fall into the drive during wiring operation or if IP20 <br> degree of protection is requested. |

## Mounting Frame Size 5 Drives

Mounting of the drive does not require any preliminary procedure. Just Screw the drive on the mounting surface using the M8 screws with captive washer.


Mounting Procedure For Frame Size 6
NOTE: Due to accessible live parts on their lower part, these drives should be installed in enclosures or located behind enclosures or barriers, which comply at least with the requirements of IP2•, as per IEC61800-5-1.

Mounting the drive does not require preliminary dismantling operation. Just screw the drive on the mounting surface using the M10 screws with captive washer.


## Chapter 4

## Drive wiring

What Is in This Chapter?
This chapter contains the following topics:

| Topic | Page |
| :--- | :---: |
| Wiring Instructions | 44 |
| Cable Length Instructions | 47 |
| Wiring Diagrams | 49 |
| Sink / Source Switch Configuration | 51 |
| Characteristics of the Power Part Terminals | 52 |
| Wiring The Power Part | 54 |
| Electromagnetic Compatibility | 58 |
| Operation on an IT or Corner Grounded System | 60 |
| Disconnecting The Built-in EMC Filter | 60 |
| Arrangement and Characteristics of Control Block Terminals and Communication and I/O Ports | 63 |
| Control Terminals Electrical Data | 64 |
| Wiring The Control Part | 67 |

## Wiring Instructions

## General Instructions

The entire installation procedure must be performed without voltage present.

### 4.4 DANGER

## HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.

Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unexpected movements because of incorrect wiring, incorrect settings, incorrect data or other errors.

| WNRNING |
| :--- |
| UNANTICIPATED EQUIPMENT OPERATION |
| - Carefully install the wiring in accordance with the EMC requirements. |
| - Do not operate the product with unknown or unsuitable settings or data. |
| - Perform a comprehensive commissioning test. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

## A WARNING

## UNANTICIPATED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in the operation.
- Do not operate the drive system with unknown settings or data.
- Verify that the wiring is appropriate for the settings.
- Never modify a parameter unless you fully understand the parameter and all effects of the modification.
- When commissioning, carefully run tests for all operating states, operating conditions and potential error situations.
- Anticipate movements in unintended directions or oscillation of the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

## 4 A DANGER

## HAZARD OF FIRE OR ELECTRIC SHOCK

- Wire cross sections and tightening torques must comply with the specifications provided in this document
- If you use stranded wire cables for a connection with a voltage higher than 25 Vac , you must use ring type cable lugs or wire ferrules, depending on the connection.

Failure to follow these instructions will result in death or serious injury.

The product has a leakage current greater than 3.5 mA . If the protective ground connection is interrupted, a hazardous touch current may flow if the product is touched.

## A 4 DANGER

## ELECTRIC SHOCK CAUSED BY HIGH LEAKAGE CURRENT

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.

Failure to follow these instructions will result in death or serious injury.

## A WARNING

## INSUFFICIENT PROTECTION AGAINST OVERCURRENTS

- Properly rated overcurrent protective devices must be used.
- Use the fuses specified in the catalog.
- Do not connect the product to a supply mains whose short-circuit current rating (Icc.) exceeds the permissible value specified in the catalog.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

## Cable Characteristics

Only use cables with...

- rigid stranded wires for the power terminals of drives of frame sizes 1 to 5
- insulator heat resistance of $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) \mathrm{min}$.

If you are using cables longer than $150 \mathrm{~m}(492 \mathrm{ft})$ between the drive and the motor, add output filters (for more details refer to the catalog).

Use a shielded cable to meet the requirements of Category C2 or C3 according to the standard IEC 618003 , except when using a sinus filter. In this case, the use of a non-shielded motor cable is possible.

To limit the currents in common mode, use common mode output filters (ferrite) in order to reduce the circulating currents in the motor windings.

Standard linear capacity cables can be used with Altivar Process. Use of cables with lower linear capacity could increase cable length performances.

The overvoltage limitation function [Motor surge limit.] $5 u L$ enables you to increase the cable length while decreasing the torque performances (refer to Programming manual). (see page 10)

## Power Part Cables Stripping lengths



| Catalog Number and Frame Size [•] |  | Cable Stripping Length |
| :--- | :--- | :--- |
|  | Input and Output |  |
|  | mm (in.) |  |
| ATV610U07N4...U75N4 | $[1]$ | $11 \pm 1(0.43 \pm 0.04)$ |
| ATV610UD11N4, D15N4 | $[2]$ | $11 \pm 1(0.43 \pm 0.04)$ |
| ATV610D18N4, D22N4 | $[3]$ | $20 \pm 2(0.79 \pm 0.08)$ |
| ATV610D30N4...D45N4 | $[4]$ | $26 \pm 2(1.02 \pm 0.08)$ |
| ATV610D55N4...D90N4 | $[5]$ | $32 \pm 3(1.26 \pm 0.12)$ |

Control Part

## A WARNING <br> UNEXPECTED EQUIPMENT OPERATION <br> Wire the digital and analog inputs and outputs only with the specified shielded, twisted cables. <br> Failure to follow these instructions can result in death, serious injury, or equipment damage. <br> - Keep the control circuits away from the power cables. For digital and analog inputs/outputs, use shielded twisted cables with a pitch of $25 \ldots 50 \mathrm{~mm}$ ( 1 in . and 2 in .) <br> - It is advisable to use cable ends, available on www.schneider-electric.com.

## Residual Current Device

Direct current can be introduced in the protective ground conductor of this drive. If a residual current device (RCD / GFCI) or a residual current monitor (RCM) is used for additional protection against direct or indirect contact, the following specific types must be used.

| DIRECT CURRENT CAN BE INTRODUCED INTO THE PROTECTIVE GROUND CONDUCTOR |
| :--- |
| - Use a Type A Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) for single- |
| phase drives connected to a phase and to the neutral conductor. |
| - Use a Type B Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) that has |
| approval for use with frequency inverters and is sensitive to all types of current for three-phase devices |
| and for single-phase devices not connected to a phase and the neutral conductor. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

Further conditions for use of a residual current device:

- The drive has an increased leakage current at the moment power is applied. Use a residual current device (RCD / GFCI) or a residual current monitor (RCM) with a response delay.
- High-frequency currents must be filtered.

Due to high leakage current in standard operation, it is advisable to choose at least a 300 mA device.
If the installation requires a residual current device less than 300 mA , it can be possible to use a device lower than 300 mA by removing the screws according to the instructions given in the Operation on an IT System section (see page 60).
If the installation includes several drives, provide one residual current device per drive.

## Equipment Grounding

## NOTICE

## DESTRUCTION DUE TO INCORRECT WIRING

- Before switching on and configuring the product, verify that it is properly wired.

Failure to follow these instructions can result in equipment damage.

### 4.1 DANGER

## ELECTRIC SHOCK CAUSED BY INSUFFICIENT GROUNDING

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- The cross section of the protective ground conductor must comply with the applicable standards.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not consider cable shields to be protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

Tighten the grounding screws according to the instructions given in the Ground Cables section (see page 52).

The product has a leakage current greater than 3.5 mA . If the protective ground connection is interrupted, a hazardous touch current may flow if the product is touched.

## A 1 DANGER

## ELECTRIC SHOCK CAUSED BY HIGH LEAKAGE CURRENT

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
Failure to follow these instructions will result in death or serious injury.

| A WARNING |
| :--- |
| INSUFFICIENT PROTECTION AGAINST OVERCURRENTS |
| - Properly rated overcurrent protective devices must be used. |
| - Use the fuses specified in the annex provided with the drive. |
| - Do not connect the product to a supply mains whose short-circuit current rating (SCCR) exceeds the |
| permissible value specified in the annex provided with the drive. |

Failure to follow these instructions can result in death, serious injury, or equipment damage.

- Ensure that the resistance to Ground is 1 Ohm or less.
- When grounding several drives, you must connect each one directly, as shown in the above figure.
- Do not loop Ground cables or connect them in series.



## Cable Length Instructions

## Long Cable Lengths Consequences

When drives are used with motors, a combination of fast switching transistors and long motor cables can even cause peak voltages up to twice the DC link voltage. This high peak voltage can cause premature aging of motor winding insulation which leads to motor breakdown.
The overvoltage limitation function will enable to increase the cable length while decreasing the torque performances.

## Length Of Motor Cables

Because of the permitted mains disturbances, the allowed overvoltages at the motor, the occurring bearing currents and the permitted heat losses the distance between inverter and motor(s) is limited.
The maximum distance heavily depends on the used motors (insulation material), the type of motor cable used (shielded/unshielded), the cable laying (cable channel, underground installation...) as well as from the used options.

## Dynamic Voltage Load Of The Motor

Overvoltages at the motor terminals result from reflection in the motor cable. Basically the motors are stressed with measurable higher voltage peaks from a motor cable length of 10 m . With the length of the motor cable also the value of overvoltage increases.

The steep edges of the switching impulses at the output side of the frequency inverter lead to a further load of the motors. The slew rate of the voltage is typically over $5 \mathrm{kV} / \mathrm{\mu s}$ but it decreases with the length of the motor cable
Load of the motor with overvoltage and slew rate when using conventional drive


L Length of motor cables in meters (feet)

## Corrective Actions Overview

A number of simple measures can be taken to help enhance the motor life time:

- Specification of a motor designed for speed drive applications (IEC60034-25 B or NEMA MG1 Part 31 should be prescribed).
- Specification of drives that integrate voltage reflection superimposition software suppression.

Refer to [Volt surge limit. opt] 5 口 P parameter in the Programming manual (see page 10).

- Reduce to a minimum the distance between motor and drive.
- Use unshielded cables.
- Reduce the drive switching frequency (a reduction to 2.5 kHz is advisable.)

Preventive Measures Suitable for Wall Mounting Drives According to IEC60034-25
The preventive measures will depend on motor characteristics and cable length.

| Motor cable length (unshielded cable) | Motor conforming to IEC60034-25 | Motor NOT-conforming to IEC60034-25 |
| :--- | :--- | :--- |
| $1 \mathrm{~m}(3 \mathrm{ft})<\mathrm{L}<50 \mathrm{~m}(164 \mathrm{ft})$ | Filter not required | dV/dt filter |
| $50 \mathrm{~m}(164 \mathrm{ft})<\mathrm{L}<100 \mathrm{~m}(328 \mathrm{ft})$ | Filter not required | Sinus filter |
| $100 \mathrm{~m}(328 \mathrm{ft})<\mathrm{L}<300 \mathrm{~m}(984 \mathrm{ft})$ | Filter not required | Sinus filter |
| $300 \mathrm{~m}(984 \mathrm{ft})<\mathrm{L}<500 \mathrm{~m}(1640 \mathrm{ft})$ | dV/dt filter | Sinus filter |
| $500 \mathrm{~m}(1640 \mathrm{ft})<\mathrm{L}<1000 \mathrm{~m}(3281 \mathrm{ft})$ | Sinus filter | Sinus filter |

NOTE: When calculating cable lengths for the purpose of guarding against these overvoltage situations, a shielded cable should count as twice the length of an unshielded cable. For example, if a shielded cable is 100 m (328 ft) in actual length, it should be considered to be equal to a $200 \mathrm{~m}(656 \mathrm{ft}$ ) length standard cable in the calculation.

## Additional Information

Further detailed technical information is available in the following white paper An Improved Approach for Connecting VSD and Electric Motors (998-2095-10-17-13ARO EN) available on www.schneiderelectric.com.

## Wiring Diagrams

## Control Block Wiring Diagram


(1) Digital Inputs - Shielding instructions are given in the Electromagnetic Compatibility section (see page 58).
(2) Reference potentiometer (ex. SZ1RV1002)
(3) Analog inputs
(4) - $10 \ldots 10 \mathrm{Vdc}$
(5) Analog outputs

Three-phase Power Supply - Diagram With Line Contactor

(1) Line choke (if used).
(2) Use relay output R1 set to operating state Fault to switch Off the product once an error is detected.

If a Run command is executed while the downstream contactor between the drive and the motor is still open, there may be residual voltage at the output of the drive. This can cause an incorrect estimation of the motor speed when the contacts of the downstream contactor are closed. This incorrect estimation of the motor speed can lead to unanticipated equipment operation or to equipment damage.
In addition, there may be overvoltage at the output of the drive if the power stage is still enabled when the downstream contactor between the drive and the motor opens.

## A WARNING

UNANTICIPATED EQUIPMENT OPERATION OR EQUIPMENT DAMAGE
If a downstream contactor is used between the drive and the motor, verify the following:

- The contacts between the motor and the drive must be closed before a Run command is executed.
- The power stage must not be enabled when the contacts between the motor and the drive open.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

(1) Line choke (if used)
(2) Use relay output R1 set to operating state Fault to switch Off the product once an error is detected.

It is possible to connect either 1 or 3 sensors on terminals Al2 or Al3.


## A WARNING <br> UNANTICIPATED EQUIPMENT OPERATION

- If the drive is set to SK or EXT, do not connect the 0 V terminal to ground or to protective ground.
- Verify that accidental grounding of digital inputs configured for sink logic, caused, for example, by damage to the signal cables, cannot occur.
- Follow all applicable standards and directives such as NFPA 79 and EN 60204 for proper control circuit grounding practices.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The switch is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs. To access the switch, follow the Access to control Terminals procedure (see page 67). The switch is located below the control terminals (see page 63).

- Set the switch to Source (factory setting) if using PLC outputs with PNP transistors.
- Set the switch to Ext if using PLC outputs with NPN transistors.

Switch Set to SRC (Source) Position Using the Output Power Supply for the Digital Inputs


Switch Set to SK (Sink) Position Using the Output Power Supply for the Digital Inputs


Switch Set to EXT Position Using an External Power Supply for the DIs


## Characteristics of the Power Part Terminals

Ground Cables
Ground cable cross sections of input and output ground cables are the same as those given for the input and output cables. Minimum cross section of protective ground cable is $10 \mathrm{~mm}^{2}$ (AWG 8) and $16 \mathrm{~mm}^{2}$ (AWG 6) for AL cable.
Tightening torques according to frame size

- Frame sizes 1...3: $2.5 \mathrm{~N} \cdot \mathrm{~m}$ (22.1 lb.in)
- Frame size 4: $12 \mathrm{~N} \cdot \mathrm{~m}$ (106.2 lb.in)
- Frame size 5: $25 \mathrm{~N} \cdot \mathrm{~m}$ (221.3 lb.in)
- Frame size 6 :
(1): $27 \mathrm{~N} \cdot \mathrm{~m}(239 \mathrm{lb} . \mathrm{in})$
- (2): $13.5 \mathrm{~N} \cdot \mathrm{~m}(119.5 \mathrm{lb} . \mathrm{in})$


Frame Size 1

| ATV610 | Supply Terminals (L1, L2, L3) |  |  | Output Terminals (U, V, W) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wire Cross Section |  | Tightening Torque <br> Rated | Wire Cross Section |  | Tightening <br> Torque <br> Rated |
|  | Minimum | Maximum (*) |  | Minimum | Maximum (*) |  |
|  | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) |
| U07N4 to U55N4 | 1.5 (16) | 6 (10) | 1.3 (11.5) | 1.5 (16) | 6 (10) | 1.3 (11.5) |
| U75N4 | 2.5 (14) | 6 (10) | 1.3 (11.5) | 2.5 (14) | 6 (10) | 1.3 (11.5) |

Only use single conductor cables with rigid stranded wires.
(*) Maximum cross section of the terminals

Frame Size 2

| ATV610 | Supply Terminals (L1, L2, L3) |  |  | Output Terminals (U, V, W) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wire Cross Section |  | Tightening <br> Torque <br> Rated | Wire Cross Section |  | Tightening <br> Torque <br> Rated |
|  | Minimum | Maximum (*) |  | Minimum | Maximum (*) |  |
|  | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) |
| D11N4 | 4 (12) | 10 (8) | 1.5 (13.3) | 4 (12) | 10 (8) | 1.5 (13.3) |
| D15N4 | 6 (10) | 10 (8) | 1.5 (13.3) | 6 (10) | 10 (8) | 1.5 (13.3) |

Only use single conductor cables with rigid stranded wires.
(*) Maximum cross section of the terminals

## Frame Size 3

| ATV610 | Supply Terminals (L1, L2, L3) |  |  | Output Terminals (U, V, W) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wire Cross Section |  | Tightening Torque <br> Rated | Wire Cross Section |  | Tightening <br> Torque <br> Rated |
|  | Minimum | Maximum (*) |  | Minimum | Maximum (*) |  |
|  | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{mm}^{2}$ (AWG) | N•m (lb.in) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{mm}^{2}$ (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) |
| D18N4, D22N4 | 10 (8) | 16 (6) | 2.5 (22.1) | 10 (8) | 16 (6) | 2.5 (22.1) |
| Only use single conductor cables with rigid stranded wires. <br> $\left(^{*}\right)$ Maximum cross section of the terminals |  |  |  |  |  |  |

Frame Size 4

| ATV610 | Supply Terminals (L1, L2, L3) |  |  | Output Terminals (U, V, W) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wire Cross Section |  | Tightening Torque | Wire Cross Section |  | Tightening Torque |
|  | Minimum | Maximum (*) | Rated | Minimum | Maximum (*) | Rated |
|  | $\mathrm{mm}^{2}$ (AWG) | mm ${ }^{2}$ (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) | $\mathrm{mm}^{2}$ (AWG) | mm² (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) |
| D30N4 | 16 (6) | 50 (1-1/0) | 12 (106.2) | 16 (6) | 50 (1-1/0) | 12 (106.2) |
| D37N4 | 25 (4) | 50 (1-1/0) | 12 (106.2) | 25 (4) | 50 (1-1/0) | 12 (106.2) |
| D45N4 | 35 (2) | 50 (1-1/0) | 12 (106.2) | 35 (2) | 50 (1-1/0) | 12 (106.2) |

Only use single conductor cables with rigid stranded wires.
(*) Maximum cross section of the terminals

Frame Size 5

| ATV610 | Supply Terminals (L1, L2, L3) |  |  | Output Terminals (U, V, W) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wire Cross Section |  | Tightening <br> Torque <br> Rated | Wire Cross Section |  | Tightening Torque <br> Rated |
|  | Minimum | Maximum (*) |  | Minimum | Maximum (*) |  |
|  | $\mathrm{mm}^{2}$ (AWG) | mm² (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) | $\mathrm{mm}^{2}$ (AWG) | mm² (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) |
| D55N4 | 50 (1-1/0) | 120 (4/0) | 25 (221.3) | 50 (1-1/0) | 120 (4/0) | 25 (221.3) |
| D75N4 | 70 (2/0) | 120 (4/0) | 25 (221.3) | 70 (2/0) | 120 (4/0) | 25 (221.3) |
| D90N4 | 95 (3/0) | 120 (4/0) | 25 (221.3) | 95 (3/0) | 120 (4/0) | 25 (221.3) |

Only use single conductor cables with rigid stranded wires.
(*) Maximum cross section of the terminals

Frame Size 6
NOTE:

- If used with ring tongue: selection criteria are compatible with screw M10, width 24 mm ( 0.94 in .), following DIN 46234.
- If used with lugs: selection criteria are compatible with standard cable lug according to DIN 46234. You may also use lug kit DZ2FH6 and DZ2FH1 available on schneider-electric.com

| ATV610 | Supply Terminals (L1, L2, L3) |  |  | Output Terminals (U, V, W) |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  | Wire Cross Section |  |  |  |  |  |  | Tightening <br> Torque | Wire Cross Section |  | Tightening <br> Torque |
|  | Minimum | Maximum (*) | Rated | Minimum | Maximum (*) | Rated |  |  |  |  |  |
|  | $\mathrm{mm}^{2}$ | $\mathrm{~mm}^{2}$ | $\mathrm{~N} \cdot \mathrm{~m}$ | $\mathrm{~mm}^{2}$ | $\mathrm{~mm}^{2}$ | $\mathrm{~N} \cdot \mathrm{~m}$ |  |  |  |  |  |
| C11N4 | $2 \times 50$ | $3 \times 120$ | 27 | $2 \times 50$ | $3 \times 120$ | 27 |  |  |  |  |  |
| C13N4 | $2 \times 70$ | $3 \times 120$ | 27 | $2 \times 70$ | $3 \times 120$ | 27 |  |  |  |  |  |
| C16N4 | $2 \times 95$ | $3 \times 120$ | 27 | $2 \times 95$ | $3 \times 120$ | 27 |  |  |  |  |  |

Wiring The Power Part

Access To The Terminals For Frame Size 1... 3

## 4 ! DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.


Apply the following instructions to access the terminals on frame size 3 drives

| Step | Action |
| :---: | :--- |
| 1 | Unscrew the 2 screws attaching the housing |
| 2 | Remove the front cover |
| 3 | Refit the front cover on completion of wiring. Tighten the screws to $1.5 \mathrm{~N} \cdot \mathrm{~m} / 13.3 \mathrm{lb}-\mathrm{in}$. |

Frame Sizes 1 and 2 Cable Path
Wire the power cables as shown below.


Frame Size 3 Cable Path
Wire the power cables as shown below.


## 4 A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.


Apply the following instructions to the terminals on frame sizes 4 and 5 drives

| Step | Action |
| :---: | :--- |
| 1 | Unscrew the 4 screws attaching the front cover |
| 2 | Remove the front cover |
| 3 | Remove the power terminal cover |
| 4 | On completion of wiring... <br> $\bullet \quad$ Refit the power terminal cover <br> $\bullet$ Refit the front cover <br> Tighten the front cover screws to... <br> $\bullet \quad 1.1 \mathrm{~N} \cdot \mathrm{~m} / 9.7$ Ib-in for frame size 4 <br> $\bullet 2.6 \mathrm{~N} \cdot \mathrm{~m} / 23 \mathrm{lb}$-in for frame size 5 |

## Frame Size 4 And 5 Cable Path

Wire the power cables as shown below.


## 4 A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.


Apply the following instructions to access the terminals on frame size 6 drives

| Step | Action |
| :---: | :--- |
| 1 | Unscrew the 6 screws attaching the bottom front cover and remove it |
| 2 | Remove the terminal cover |
| 3 | Refit the front cover on completion of wiring. Tighten the screws to $3.3 \mathrm{~N} \cdot \mathrm{~m} / 29.3 \mathrm{lb}-\mathrm{in}$. |

## Frame Size 6 Cable Path

NOTE: Due to accessible live parts on their lower part, these drives should be installed in enclosures or located behind enclosures or barriers, which comply at least with the requirements of IP2•, as per IEC61800-5-1.

Use 1 or 2 connection cables per terminal, depending on the cable characteristics. Refer to standard IEC 60364-5-52 for cable selection. Permissible cable cross sections are given in

For 2 connection cable wiring:

| Step | Action |
| :---: | :--- |
| 1 | Connect the first cable on the lower terminal |
| 2 | Connect the other cable on the upper terminal |

For 2 cable connection, wire the power cables as shown below.


NOTE: A conduit box is available as an option. It enables an IP21 degree of protection at the bottom side of the drive. See www.schneider-electric.com


## Electromagnetic Compatibility

Limit Values
This product meets the EMC requirements according to the standard IEC 61800-3 if the measures described in this manual are implemented during installation. If the selected composition (product itself, mains filter, other accessories and measures) does not meet the requirements of category C 1 , the following information applies as it appears in IEC 61800-3:

| WNARNING |
| :--- |
| RADIO INTERFERENCE |
| In a domestic environment this product may cause radio interference in which case supplementary |
| mitigation measures may be required. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

EMC requirements for the control cabinet

| EMC measures | Objective |
| :--- | :--- |
| Use mounting plates with good electrical conductivity, connect large surface areas <br> of metal parts, remove paint from contact areas. | Good conductivity due to large <br> surface contact. |
| Ground the control cabinet, the control cabinet door and the mounting plate with <br> ground straps or ground wires. The conductor cross section must be at least $10 \mathrm{~mm}^{2}$ <br> (AWG 8). | Reduces emissions. |
| Fit switching devices such as power contactors, relays or solenoid valves with <br> interference suppression units or arc suppressors (for example, diodes, varistors, <br> RC circuits). | Reduces mutual interference. |
| Install power components and control components separately. | Reduces emissions. |
| Install frame size 1 and 2 drives on grounded metal back plane. |  |

Shielded cables

| EMC measures | Objective |
| :--- | :--- |
| Connect large surface areas of cable shields, use cable clamps and ground straps. | Reduces emissions. |
| Use cable clamps to connect a large surface area of the shields of all shielded cables <br> to the mounting plate at the control cabinet entry. | Rem |
| Ground shields of digital signal wires (see page 49) at both ends by connecting them <br> to a large surface area or via conductive connector housings | Reduces interference affecting <br> the signal wires, reduces <br> emissions |
| Ground the shields of analog signal wires directly at the device (signal input); insulate <br> the shield at the other cable end or ground it via a capacitor (for example, 10 nF, <br> $100 ~ V ~ o r ~ h i g h e r . ~$ | Reduces ground loops due to <br> low-frequency interference. |
| Use only shielded motor cables with copper braid and a coverage of at least 85\%, <br> ground a large surface area of the shield at both ends. | Diverts interference currents in <br> a controlled way, reduces <br> emissions. |

Cable Installation

| EMC measures | Objective |
| :--- | :--- |
| Do not route fieldbus cables and signal wires in a single cable duct together with lines <br> with DC and AC voltages of more than 60 V . (Fieldbus cables, signal lines and <br> analog lines may be in the same cable duct) <br> Recommendation: Use separate cable ducts at least 20 cm (8 in.) apart. | Reduces mutual interference. |
| Keep cables as short as possible. Do not install unnecessary cable loops, use short <br> cables from the central grounding point in the control cabinet to the external ground <br> connection. | Reduces capacitive and <br> inductive interference. |
| Use equipotential bonding conductors in the following cases: wide-area installations, <br> different voltage supplies and installation across several buildings. | Reduces current in the cable <br> shield, reduces emissions. |
| Use fine stranded equipotential bonding conductors. | Diverts high-frequency <br> interference currents |
| If motor and machine are not conductively connected, for example by an insulated <br> flange or a connection without surface contact, you must ground the motor with a <br> ground strap or a ground wire. The conductor cross section must be at least $10 \mathrm{~mm}^{2}$ <br> (AWG 8). | Reduces emissions, increases <br> immunity. |
| Use twisted pair for the DC supply. <br> For digital and analog inputs use shielded twisted cables with a pitch of between <br> $25 . . .50 \mathrm{~mm}(1 . . .2$ in). | Reduces interference affecting <br> the signal cables, reduces <br> emissions. |

Power Supply

| EMC measures | Objective |
| :--- | :--- |
| Operate product on mains with grounded neutral point. | Enables effectiveness of mains <br> filter. |
| Surge arrester if there is a risk of overvoltage. | Reduces the risk of damage <br> caused by overvoltage. |

## Additional measures for EMC improvement

Depending on the application, the following measures can improve the EMC-dependent values:

| EMC measures | Objective |
| :--- | :--- |
| Use mains chokes | Reduces mains harmonics, <br> prolongs product service life. |
| Use external mains filters | Improves the EMC limit values. |
| Additional EMC measures, for example mounting in a closed control cabinet with <br> 15 dB shielding attenuation of radiated interference |  |

NOTE: If using an additional input filter, it should be mounted as close as possible to the drive and connected directly to the supply mains via an unshielded cable.

## Operation on an IT or Corner Grounded System

## Definition

IT system: Isolated or impedance grounded neutral. Use a permanent insulation monitoring device compatible with nonlinear loads, such as an XM200 type or equivalent.
Corner grounded system: System with one phase grounded.

## Operation

| NOT/CE |
| :--- |
| OVERVOLTAGE |
| If the drive is operated via an IT or corner grounded system, the integrated EMC filter must be |
| disconnected as described in the present manual. |
| Failure to follow these instructions can result in equipment damage. |

## Disconnecting The Built-in EMC Filter

Filter Disconnection

## 4 ! DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.

The drives have a built-in EMC filter. As a result they exhibit leakage current to ground. If the leakage current creates compatibility problems with your installation (residual current device or other), then you can reduce the leakage current by disconnecting the built-in filter as shown below. In this configuration the product does not meet the EMC requirements according to the standard IEC 61800-3.

Setting
Apply the following instructions to disconnect the built-in EMC filter.

| Step | Action |
| :---: | :--- |
| 1 | Remove the front cover(s) (see page 54) |
| 2 | The screw(s) or switch is/are factory set to the position, as shown on detail (1) |
| 3 | For operation without the built-in EMC filter, remove the screw(s) from its/ their location or move the switch <br> from its position and set it/them to the position, as shown on detail (2) |
| 4 | Refit the front cover(s) |

NOTE:

- Use only the screw(s) supplied.
- Do not operate the drive with setting screw(s) removed.


## Setting For Frame Size 1 Products



## Setting For Frame Size 3 Products



## Setting For Frame Size 4 Products



Setting For Frame Size 5 Products


Setting For Frame Size 6 Products


## Arrangement and Characteristics of Control Block Terminals and Communication and I/O Ports

Terminal Arrangement
The control block terminals are the same for all drive frame sizes

(1) Modbus VP12S: This is the standard Modbus serial link marking. VP•S means connector with power supply, where 12 stands for the 12 Vdc supply voltage.

## Wiring Characteristics

NOTE: Control terminals can accept 1 or 2 wires.
Wire cross sections and tightening torques

| Control Terminals | Relay Output Wire Cross Section |  | Other Wire Cross Section |  | Tightening Torque |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Minimum (1) | Maximum | Minimum (1) | Maximum |  |
|  | mm² (AWG) | mm² (AWG) | mm² (AWG) | mm² (AWG) | $\mathrm{N} \cdot \mathrm{m}$ (lb.in) |
| All terminals | 0.75 (18) | 1.5 (16) | 0.5 (20) | 1.5 (16) | 0.5 (4.4) |

(1) The value corresponds to the minimum permissible cross section of the terminal.

NOTE: Also refer to Control Terminal Electrical data (see page 64).

RJ45 Communication port
It is used to connect a:

- Remote graphic display terminal, using a Modbus serial line
- Modbus network
- Configuration loader tool...

NOTE: Check that RJ45 cable is not damaged prior to connect it to the product otherwise the power supply of the control could be lost.

## Control Terminals Electrical Data

## Characteristics of Terminals

## NOTE:

- For a description of the terminal arrangement, refer to Arrangement and Characteristics of Control

Terminals and Communication And I/O Ports (see page 63)

- For factory setting I/O assignment, refer to the Programming Manual.

| Terminal | Description | $\begin{aligned} & \text { I/O } \\ & \text { Type } \end{aligned}$ | Electrical characteristics |
| :---: | :---: | :---: | :---: |
| R1A | NO contact of relay R1 | O | Output Relay 1 <br> - Minimum switching capacity: 5 mA for 24 Vdc <br> - Maximum switching current on resistive load: $(\cos \varphi=1): 3 \mathrm{~A}$ for 250 Vac (OVC II) and 30 Vdc <br> - Maximum switching current on inductive load: $(\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ ): 2 A for 250 Vac (OVC II) and 30 Vdc <br> - Refresh time: $5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ <br> - Service life: 100,000 operations at maximum switching current |
| R1B | NC contact of relay R1 | O |  |
| R1C | Common point contact of relay R1 | 0 |  |
| R2A | NO contact of relay R2 | 0 | Output Relay 2 <br> - Minimum switching capacity: 5 mA for 24 Vdc <br> - Maximum switching current on resistive load: $(\cos \varphi=1)$ : 3 A for 250 Vac and 30 Vdc <br> - Maximum switching current on inductive load: $(\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ ): 2 A for 250 Vac and 30 Vdc <br> - Refresh time: $5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ <br> - Service life: 100,000 operations at maximum switching power |
| R2C | Common point contact of relay R2 | O |  |
| R3A | NO contact of relay R3 | 0 | Output Relay 3 <br> - Minimum switching capacity: 5 mA for 24 Vdc <br> - Maximum switching current on resistive load: $(\cos \varphi=1): 3 \mathrm{~A}$ for 250 Vac and 30 Vdc <br> - Maximum switching current on inductive load: $(\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ ): 2 A for 250 Vac and 30 Vdc <br> - Refresh time: $5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ <br> - Service life: 100,000 operations at maximum switching power |
| R3C | Common point contact of relay R3 | O |  |
| 24V | Output supply for digital inputs | O | - +24 Vdc <br> - Tolerance: minimum 20.4 Vdc , maximum 27 Vdc <br> - Current: maximum 200 mA for both 24 Vdc terminals <br> - Terminal protected against overload and short-circuit <br> - In Sink Ext position, this supply is powered by external PLC supply |
| COM | Analog I/O common | I/O | 0 V for Analog outputs |
| AQ1 | Analog output | 0 | AQ: Analog output software-configurable for voltage or current <br> - Voltage analog output $0 . . .10 \mathrm{Vdc}$, minimum. Minimum load impedance $470 \Omega$, <br> - Current analog output $\mathrm{X}-\mathrm{Y}$ mA by programming X and Y from $0 . . .20 \mathrm{~mA}$, maximum load impedance $500 \Omega$ <br> - Sampling time $10 \mathrm{~ms}+1 \mathrm{~ms}$ <br> - Resolution 10 bits <br> - Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ <br> - Linearity $\pm 0.2 \%$ |
| AQ2 | Analog output | O |  |
| P24 | External input supply | I | External input supply +24 Vdc <br> - Tolerance: minimum 19 Vdc , maximum 30 Vdc <br> - Current: maximum 0.8 A |
| OV | 0 V | I/O | 0 V for P24 |


| Terminal | Description | $\begin{aligned} & \text { I/O } \\ & \text { Type } \end{aligned}$ | Electrical characteristics |
| :---: | :---: | :---: | :---: |
| DI1-DI6 | Digital inputs | I | 6 programmable logic inputs 24 Vdc , comply with IEC/EN 61131-2 logic type 1 <br> - Positive logic (Source): State 0 if $\leqslant 5 \mathrm{Vdc}$ or logic input not wired, state 1 if $\geqslant 11 \mathrm{Vdc}$ <br> - Negative logic (Sink):State 0 if $\geqslant 16 \mathrm{Vdc}$ or logic input not wired, state 1 if $\leqslant 10 \mathrm{Vdc}$ <br> - Impedance $3.5 \mathrm{k} \Omega$ <br> - Maximum voltage: 30 Vdc <br> - Sampling time: $2 \mathrm{~ms}+0.5 \mathrm{~ms}$ maximum <br> Multiple assignment makes it possible to configure several functions on one input (example: DI1 assigned to forward and preset speed 2, DI3 assigned to reverse and preset speed 3). |
| DI5-DI6 | Pulse inputs | I | Programmable Pulse input <br> - Comply with level 1 PLC, IEC 65A-68 standard <br> - State 0 if $<0.6 \mathrm{Vdc}$, state 1 if $>2.5 \mathrm{Vdc}$ <br> - Pulse counter $0 . . .30 \mathrm{kHz}$ <br> - Frequency range: $0 \ldots 30 \mathrm{kHz}$ <br> - Cyclic ratio: $50 \% \pm 10 \%$ <br> - Maximum input voltage $30 \mathrm{Vdc},<10 \mathrm{~mA}$ <br> - Sampling time: $5 \mathrm{~ms}+1 \mathrm{~ms}$ maximum |
| 10V | Output supply for Analog input | 0 | Internal supply for the analog inputs <br> - 10.5 Vdc <br> - Tolerance $\pm 5 \%$ <br> - Current: maximum 10 mA <br> - Short circuit protected |
| $\begin{aligned} & \text { Al1-AI2- } \\ & \text { Al3 } \end{aligned}$ | Analog inputs | I | Software-configurable V/A : voltage or current analog input <br> - Voltage analog input $0 . .10 \mathrm{Vdc}$, impedance $30 \mathrm{k} \Omega$, <br> - Current analog input $X-Y$ mA by programming $X$ and $Y$ from $0 . . .20 \mathrm{~mA}$, with impedance $250 \Omega$ <br> - Sampling time: $5 \mathrm{~ms}+1 \mathrm{~ms}$ maximum <br> - Resolution 12 bits <br> - Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ <br> - Linearity $\pm 0.15 \%$ of maximum value |
| COM | Analog I/O common | I/O | 0 V for Analog inputs |


| Terminal | Description | $\mathrm{I} / \mathrm{O}$ <br> Type | Electrical characteristics |
| :---: | :---: | :---: | :---: |
| AI2-AI3 | Sensor inputs | I | Software-configurable PT100/PT1000 or KTY84 or PTC or Water level sensor <br> - PT100 <br> - 1 or 3 thermal sensors mounted in series (configurable by software) <br> O Sensor current: 5 mA <br> O Range $-20 \ldots .200^{\circ} \mathrm{C}\left(-4 \ldots 392^{\circ} \mathrm{F}\right)$ <br> - Accuracy $+/-4^{\circ} \mathrm{C}\left(39^{\circ} \mathrm{F}\right)$ for a temperature variation of $60^{\circ} \mathrm{C}$ ( $140^{\circ} \mathrm{F}$ ) <br> - PT1000 <br> - 1 or 3 thermal sensors mounted in series (configurable by software) <br> O Thermal sensor current: 1 mA <br> O Range $-20 \ldots .200^{\circ} \mathrm{C}\left(-4 \ldots 392^{\circ} \mathrm{F}\right)$ <br> O Accuracy $+/-4^{\circ} \mathrm{C}\left(39^{\circ} \mathrm{F}\right)$ for a temperature variation of $60^{\circ} \mathrm{C}$ ( $140^{\circ} \mathrm{F}$ ) <br> - PTC <br> - 6 sensors maximum mounted in series <br> - Sensor current: 1 mA <br> O Nominal value: $<1.5 \mathrm{k} \Omega$ <br> O Overheat trigger threshold: $2.9 \mathrm{k} \Omega \pm 0.2 \mathrm{k} \Omega$ <br> O Overheat reset threshold: $1.575 \mathrm{k} \Omega \pm 0.75 \mathrm{k} \Omega$ <br> O Low impedance detection threshold: $50 \Omega-10 \Omega /+20 \Omega$ <br> - KTY84 <br> O 1 thermal sensor <br> O Thermal sensor current: 1 mA <br> - Range $-20 \ldots 200^{\circ} \mathrm{C}\left(-4 \ldots 392^{\circ} \mathrm{F}\right)$ <br> - Accuracy $+/-4^{\circ} \mathrm{C}\left(39^{\circ} \mathrm{F}\right)$ for a temperature variation of $60^{\circ} \mathrm{C}$ ( $140^{\circ} \mathrm{F}$ ) <br> - Water Level Sensor <br> O Sensitivity: 0... $1 \mathrm{M} \Omega$, adjustable by software <br> - Water level sensor current: $0.3 \mathrm{~mA} . .1 \mathrm{~mA}$ maximum <br> O Adjustable delay: $0 . . .10 \mathrm{~s}$ |

## Wiring The Control Part

Preliminary Steps

### 4.4 DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.

| WARNING |
| :--- |
| UNINTENDED BEHAVIOR OF INPUTS AND OUTPUTS |
| The functions of the inputs and outputs depend on the selected operating mode and the settings of the |
| corresponding parameters. |
| - Verify that the wiring is appropriate for the settings. |
| - Only start the system if there are no persons or obstructions in the hazardous area. |
| - When commissioning, carefully run tests for all operating states and potential error situations. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

Access to the Terminals

## A. 1 DANGER

## HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.

Failure to follow these instructions will result in death or serious injury.

To access the control terminals, refer to the procedure described in the Wiring the Power Part chapter (see page 54).

Optional Module Installation and Wiring
To help ensure correct wiring of the control part, apply the following instructions to install and connect a module to be wired

| Step | Action |
| :---: | :--- |
| 1 | Insert the module in the dedicated slot. |
| 2 | Connect the cable to the module |



I/O Relay Module Installation and Wiring
To help ensure correct wiring of the control part, apply the following instructions to install and connect an I/O relay module.

| Step | Action |
| :---: | :--- |
| 1 | Insert the I/O relay module in the option module slot. |
| 2 | Push the module into its location and keep access to the module terminal screws. |
| 3 | Prepare the I/O cable for wiring. |
| 4 | Wire the I/O relay module. |
| 5 | Push again the module to its final position. |



## Control Cables Path - Drives With Conduit Box

To help ensure correct wiring of the control part, apply the following instructions to wire the control block terminals

| Step | Action |
| :---: | :--- |
| 1 | Wire the P24, OV, the digital inputs (DI1...DI6), and the +24 terminals |
| 2 | Wire the COM and the analog outputs (AQ1, AQ2) terminals, wire the 10V, the analog inputs <br> $($ Al1...AI3) and COM terminals |
| 3 | Wire the Relay outputs |



## Chapter 5

## Checking Installation

## Before Switching On

Unsuitable settings or unsuitable data or unsuitable wiring may trigger unintended movements, trigger signals, damage parts and disable monitoring functions.

| (1) WARNING |
| :---: |
| UNANTICIPATED EQUIPMENT OPERATION <br> - Only start the system if there are no persons or obstructions in the zone of operation. <br> - Verify that a functioning emergency stop push-button is within reach of all persons involved in the operation. <br> - Do not operate the drive system with unknown settings or data. <br> - Verify that the wiring is appropriate for the settings. <br> - Never modify a parameter unless you fully understand the parameter and all effects of the modification. <br> - When commissioning, carefully run tests for all operating states, operating conditions and potential error situations. <br> - Anticipate movements in unintended directions or oscillation of the motor. <br> Failure to follow these instructions can result in death, serious injury, or equipment damage. |

If the power stage is disabled unintentionally, for example as a result of power outage, errors or functions, there is a possibility that the motor is no longer decelerated in a controlled way.

| UNARNING |
| :--- |
| UNANTICIPATED EQUIPMENT OPERATION |
| Verify that movements without braking effect cannot cause injuries or equipment damage. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

## Mechanical Installation

Verify the mechanical installation of the entire drive system:

| Step | Action | $\checkmark$ |
| :---: | :--- | :--- |
| 1 | Does the installation meet the specified distance requirements? |  |
| 2 | Did you tighten all fastening screws to the specified tightening torque? |  |

## Electrical installation

Verify the electrical connections and the cabling:

| Step | Action | $\checkmark$ |
| :---: | :--- | :--- |
| 1 | Did you connect all protective ground conductors? |  |
| 2 | The correct tightening of the screws may be altered during assembly and wiring phases of the drive. <br> Verify and adjust the tightening of all terminal screws to the specified nominal torque. |  |
| 3 | Do all fuses and circuit breaker have the correct rating; are the fuses of the specified type? (refer to <br> the catalog). |  |
| 4 | Did you connect or insulate all wires at the cable ends? |  |
| 5 | Did you properly connect and install all cables and connectors? |  |
| 6 | Do all plug-in terminals colors and markings correspond to the colors and marking of the control <br> block? |  |
| 7 | Did you properly connect the signal wires? |  |
| 8 | Are the required shield connections EMC-compliant? |  |


| Step | Action | $\checkmark$ |
| :---: | :--- | :--- |
| 9 | Did you take all measures for EMC compliance? |  |

Covers And Seals
Verify that all devices, doors and covers of cabinet are properly installed to meet the required degree of protection.

## Chapter 6

Maintenance

## Scheduled servicing

## Servicing

### 4.4 DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in Safety Information chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.
The temperature of the products described in this manual may exceed $80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$ during operation.

|  |
| :--- |
| HOT SURFACES |
| - Ensure that any contact with hot surfaces is avoided. |
| - Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces. |
| - Verify that the product has sufficiently cooled down before handling it. |
| - Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

## A WARNING

## INSUFFICIENT MAINTENANCE

Verify that the maintenance activities described below are performed at the specified intervals.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Adherence to the environmental conditions must be ensured during operation of the drive. In addition, during maintenance, verify and, if appropriate, correct all factors that may have an impact on the environmental conditions.

|  | Part concerned | Activity | Interval (1) |
| :--- | :--- | :--- | :--- |
| Overall condition | All parts such as housing, HMI, <br> control block, connections, etc. | Perform a visual inspection | At least every year |
| Corrosion | Terminals, connectors, screws | Inspect and clean if required |  |
| Dust | Terminals, fans, cabinet air <br> inlets and air outlets, air filters of <br> cabinet | Inspect and clean if required |  |
| Cooling | Fan | Verify the fan operation | At least every year |
| Fastening | All screws for electrical and <br> mechanical connections | Verify tightening torques | At least every year |

(1) Maximum maintenance intervals from the date of commissioning. Reduce the intervals between maintenance to adapt maintenance to the environmental conditions, the operating conditions of the drive, and to any other factor that may influence the operation and/ or maintenance requirements of the drive.

NOTE: The fan operation depends on the drive thermal state. The drive may be running and the fan not.

Fans may continue to run for a certain period of time even after power to the product has been disconnected.

## A CAUTION

## RUNNING FANS

Verify that fans have come to a complete standstill before handling them.
Failure to follow these instructions can result in injury or equipment damage.

## Diagnostic And Troubleshooting

Refer to the ATV610 Programming Manual (see page 10) available on www.schneider-electric.com.

Spares and repairs
Serviceable product. Please refer to your Customer Care Center on:
www.schneider-electric.com/CCC.

Long time storage
If the drive was not connected to mains for an extended period of time, the capacitors must be restored to their full performance before the motor is started.

## NOTICE

## REDUCED CAPACITOR PERFORMANCE

- Apply mains voltage to the drive for one hour before starting the motor if the drive has not been connected to mains for the following periods of time:
- 12 months at a maximum storage temperature of $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$
- 24 months at a maximum storage temperature of $+45^{\circ} \mathrm{C}\left(+113^{\circ} \mathrm{F}\right)$
- 36 months at a maximum storage temperature of $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$
- Verify that no Run command can be applied before the period of one hour has elapsed.
- Verify the date of manufacture if the drive is commissioned for the first time and run the specified procedure if the date of manufacture is more than 12 months in the past.
Failure to follow these instructions can result in equipment damage.
If the specified procedure cannot be performed without a Run command because of internal mains contactor control, perform this procedure with the power stage enabled, but the motor being at standstill so that there is no appreciable mains current in the capacitors.


## Uninstall the Product

INSUFFICIENT PROTECTION

- Implement all safety measures required by the applicable regulations and by the processes used to
dismantle/disassemble and dispose of the product.
- Use all necessary personal protective equipment such as gloves and goggles.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Observe the following procedure when uninstalling the product.

- Switch off all supply voltage. Verify that no voltages are present - refer to Safety Information chapter (see page 6).
- Remove all connection cables.
- Uninstall the product.

End of Life
The components of the product consist of different materials which can be recycled and which must be disposed of separately.

- Dispose of the packaging in compliance with all applicable regulations.
- Dispose of the product in compliance with all applicable regulations.

Refer to Green Premium section (see page 16)for information and documents on environmental protection such as EoLI (End of Life instruction).

## Customer Care Center

For additional support, you can contact our Customer Care Center on: www.schneider-electric.com/CCC.

## Glossary

## $E$

ELV

Error
Extra-Low Voltage. For more information: IEC 60449

Discrepancy between a detected (computed, measured, or signaled) value or condition and the specified or theoretically correct value or condition.

## F

Factory setting
Factory settings when the product is shipped
Fault
Fault is an operating state. If the monitoring functions detect an error, a transition to this operating state is triggered, depending on the error class. A "Fault reset" is required to exit this operating state after the cause of the detected error has been removed. Further information can be found in the pertinent standards such as IEC 61800-7, ODVA Common Industrial Protocol (CIP).

Fault reset
A function used to restore the drive to an operational state after a detected error is cleared by removing the cause of the error so that the error is no longer active.

L
L/R
Time constant equal to the quotient of inductance value (L) over the resistance value (R).

## N

NC contact
Normally Closed contact
NO contact
Normally Open contact

OEM
Original Equipment Manufacturer

## P

PA/+
DC bus terminal
PC/-
DC bus terminal
PELV
Protective Extra Low Voltage, low voltage with isolation. For more information: IEC 60364-4-41
PLC
Programmable logic controller

## Power stage

The power stage controls the motor. The power stage generates current for controlling the motor.

PTC
Positive Temperature Coefficient. PTC thermistor probes integrated in the motor to measure its temperature
$R$
REACh
Registration, Evaluation, Authorisation and restriction of Chemicals regulation
RoHS
Restriction of Hazardous Substances

## S

STO
Safe Torque Off: No power that could cause torque or force is supplied to the motor
W
Warning
If the term is used outside the context of safety instructions, a warning alerts to a potential problem that was detected by a monitoring function. A warning does not cause a transition of the operating state.

ATV610_Installation_manual_EN_EAV64381_06_1

